首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39670篇
  免费   3120篇
  国内免费   2122篇
电工技术   1673篇
技术理论   1篇
综合类   2159篇
化学工业   12031篇
金属工艺   7341篇
机械仪表   1754篇
建筑科学   1764篇
矿业工程   845篇
能源动力   1660篇
轻工业   2230篇
水利工程   206篇
石油天然气   1229篇
武器工业   297篇
无线电   2964篇
一般工业技术   5540篇
冶金工业   1480篇
原子能技术   341篇
自动化技术   1397篇
  2024年   111篇
  2023年   767篇
  2022年   1043篇
  2021年   1286篇
  2020年   1236篇
  2019年   1147篇
  2018年   1103篇
  2017年   1470篇
  2016年   1351篇
  2015年   1379篇
  2014年   2072篇
  2013年   2176篇
  2012年   2721篇
  2011年   3078篇
  2010年   2376篇
  2009年   2283篇
  2008年   1973篇
  2007年   2458篇
  2006年   2371篇
  2005年   1994篇
  2004年   1781篇
  2003年   1482篇
  2002年   1328篇
  2001年   1092篇
  2000年   952篇
  1999年   741篇
  1998年   567篇
  1997年   451篇
  1996年   418篇
  1995年   371篇
  1994年   295篇
  1993年   238篇
  1992年   235篇
  1991年   129篇
  1990年   102篇
  1989年   77篇
  1988年   56篇
  1987年   33篇
  1986年   36篇
  1985年   29篇
  1984年   20篇
  1983年   21篇
  1982年   17篇
  1981年   16篇
  1980年   12篇
  1979年   3篇
  1977年   3篇
  1975年   2篇
  1959年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(4):5091-5099
The impact of the addition of TiO2 nanoparticles and nanowires on the morphology, phase characteristics, contact angle, and electrochemical performance of chemically bonded phosphate ceramic coatings (CBPCs) was investigated. The chemical composition and surface morphology of the TiO2 nanoparticle and nanowire modified with and without (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane were characterized. Results indicated that the hydrophobic –CF2– and –CF3 groups were successfully introduced into the TiO2 nanoparticles and nanowires after modification. Corrosion resistance of CBPCs with TiO2 was evidently improved compared with that without TiO2. Such improvement was mainly due to the combined effects of low surface energy materials and micro/nano structures. In addition, CBPCs with TiO2 nanowires exhibited higher hydrophobicity and corrosion resistance than those with TiO2 nanoparticles because of the special columnar structure of the nanowires.  相似文献   
2.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
3.
《Ceramics International》2022,48(17):24157-24191
Great progress in the development of low-cost ceramic membranes from alternative materials have been achieved recently towards various application especially water and wastewater treatment. However, their significance has not been fully recognized and understood especially in term of their microstructural analysis such as formation of grain growth and microcracks. This review paper summarizes fabrication method, alternative materials, microstructure, wettability, mechanical properties and application of low-cost ceramic membrane. The fabrication method including slip casting, tape casting, extrusion, pressing method and phase inversion technique are described. Alternative materials used in low-cost ceramic membrane fabrication are discussed and categorized into clays, agricultural waste, industrial waste and animal bone waste. The mechanisms of morphology formation, microstructure and wettability properties are analysed. Modification strategies for the surface of low-cost ceramic membrane are discussed, and classified into modification for separation application, modification for photocatalytic application and modification for membrane distillation and membrane contactor system. Modification improves the membrane structure by changing the pore size, porosity and wettability properties of low-cost ceramic membranes. Mechanical properties of low-cost ceramic membranes are also discussed in detail towards several mechanism, like grain growth phenomenon and formation of microcracks which also considered as membrane defects. Grain growth phenomenon can be divided into normal and abnormal grain growth. Meanwhile, formation of microcracks could be occurred in single-phase polycrystalline ceramics that have anisotropic grains or biphasic polycrystalline grains. The application of low-cost ceramic membrane in seawater desalination, oily wastewater treatment, heavy metal adsorption, textile separation and photocatalytic application are reviewed. Finally, some possible opportunities and challenges for further development of low-cost ceramic membrane are pointed out.  相似文献   
4.
Lithium iron phosphate battery (LIPB) is the key equipment of battery energy storage system (BESS), which plays a major role in promoting the economic and stable operation of microgrid. Based on the advancement of LIPB technology and efficient consumption of renewable energy, two power supply planning strategies and the china certified emission reduction (CCER) model are proposed respectively. Based on it, the multi-objective planning optimization model with economic benefits, environmental benefits and power supply stability as the objective function is established for the first time, and the Newton Weighted Sum Frisch method (NWSFA) solution model is adopted. In the planning process, rain flow counting method is used to research the life of BESS, which improves the accuracy of energy storage annual cost calculation. A park in northern China is taken as a case study to demonstrate the application of this model. The simulation results show that the annual economic operating cost of BESS is decreased by 18.81%, the energy supply reliability is increased by 0.15%, and the optimal electricity price adjustment ratio of the system is 15%.  相似文献   
5.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
6.
《Ceramics International》2022,48(5):6302-6312
In this study we synthesized Li-rich Li1.2Ni0.13Mn0.54Co0.13O2 (LMNCO) as a composite cathode material through a two-step spray-drying method, using transition metal (TM) acetates and citric acid (CA, as a chelating agent) at various molar ratios and then calcining at various temperatures for various periods of time. This two-step spray-drying method created hierarchical nano/micro-sphere structures of the LMNCO cathode material. The LMNCO cathode exhibited the best electrochemical performance when synthesized with a TM:CA ratio of 3:2, a calcination temperature of 900 °C, and a calcination time of 5 h. This as-prepared LMNCO composite was then modified with polyimide (PI) at various weight ratios (PI/LMNCO = 0.5, 1.0, and 1.5 wt%) to improve its electrochemical properties. Among the various structures, the LMNCO cathode material coated with 1.0 wt% of PI at a layer thickness of approximately 1.88 nm achieved the best initial discharge capacities. This modified electrode also displayed enhanced cycle stability, with over 93.3 and 87.9% of the capacity retained after 30 cycles at 0.1C and 100 cycles at 1C, respectively. In comparison, the capacity retention of the unmodified LMNCO electrode measured under the same conditions was no more than 91.3% at 0.1C and 70.1% at 1C. Thus, surface modification with PI was an effective method for improving the coulombic efficiency, discharge capacity, and long-term cycling performance of the LMNCO cathode. Such PI-coated LMNCO composite cathode materials appear to be potential candidates for use in next-generation high-performance lithium-ion batteries.  相似文献   
7.
A conducting and anticorrosive coating is crucial for the application of metal bipolar plates (BP) in proton exchange membrane fuel cell (PEMFC). In this work, a Ti3C2Tx (T)-carbon black (C)-acrylic epoxy (AE) coating is prepared on 304 stainless steel (SS) with enhanced corrosion resistance and conductivity. The corrosion resistance of the T-C-AE coating is investigated in a 0.5 M H2SO4 solution as compared to the AE, T, and T-AE coatings. The T-C-AE coated 304SS exhibits the strongest corrosion resistance with the most positive corrosion potential and the lowest corrosion current density of 0.00673 μA cm?2 in all the samples, while retaining intact and compact surface morphology with the lowest metal ion dissolution even after immersed for 720 h. The addition of Ti3C2Tx and carbon black into the AE matrix greatly decreases interfacial contact resistance (ICR), and the T-C-AE coating achieves a low ICR of 15.5 mΩ cm?2 under 140 N cm?2 compaction force. The excellent anticorrosion performance is mainly attributed to the physical barrier and the cathodic protection provided by the stacked Ti3C2Tx (MXene) nanosheets in the T-C-AE coating. This eco-friendly, conducting, and anticorrosive T-C-AE coating has a good application prospect on SS BP of PEMFC.  相似文献   
8.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
9.
《Ceramics International》2022,48(15):21502-21514
Based on the good osteogenic and angiogenic effects of silicon and magnesium elements, three types of micro-nano magnesium-containing silicates (MS), including akermanite (Ake, Ca2MgSi2O7), diopside (Dio, CaMgSi2O6) and forsterite (For, Mg2SiO4), were incorporated into calcium phosphate cement (CPC) to improve its osteogenic and angiogenic performances for clinical application. In this present work, the physicochemical properties, osteogenesis and angiogenesis of MS/CPCs (Ake/CPCs, Dio/CPCs and For/CPCs) were investigated systematically and comparatively. The results showed that all MS/CPCs had good biomineralization and significantly stimulated the osteogenic differentiation of mBMSCs and angiogenic differentiation of HUVECs, respectively. Besides, the stimulating effects were related to not only the category of MS, but also the content of MS. The For/CPCs had a good angiogenic property but their initial setting times were beyond 60 min. The Dio/CPCs showed the lowest biological performance among the three groups of MS/CPCs due to the lower ion release (Si and Mg). The Ake was the ideal modifier that could provide CPC with appropriate physicochemical properties, better osteogenesis and angiogenesis. Simultaneously, a higher addition (10 wt%) of akermanite resulted in the best potential to bone regeneration. Taken together, this research provides an effective approach to improve the overall performance of CPC, and 10Ake/CPC is of great promising prospect in bone repair.  相似文献   
10.
《Ceramics International》2022,48(6):7885-7896
Al2O3 and honeycomb skeleton-Al2O3 composite coatings on Titanium alloy (Ti–6Al–4V) were prepared by atmospheric plasma spraying. A laser ablation experiment on as-sprayed coatings was performed. In this paper, the laser damage resistance, microstructure, phase composition of Al2O3 coatings were examined. 3D Dimensional Confocal Microscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy Dispersive Spectrometry (EDS) characterized the laser damage morphology, microstructure, phase composition, and element analysis, respectively. The influence of the honeycomb skeleton on the laser ablation damage on as-sprayed coatings was investigated by a comparative analysis of the laser damage morphology with different laser ablation times and gas flow. The results show that the honeycomb skeleton raises thermal conductivity and thermal diffusivity. Moreover, a “tower”-like dendrite was generated during the laser irradiation of the composite coating. The honeycomb skeleton refined the structure, suppressed crack propagation, and reduced the influence of gas flow on cracks. Under the same experimental laser ablation parameters, the laser damage area of the honeycomb skeleton-Al2O3 composite coating was smaller than that of the Al2O3 coating. It was demonstrated that the laser damage resistance of the honeycomb skeleton-Al2O3 composite coating was superior to that of the Al2O3 coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号